United States Patent
[11] Patent Number:
5,852,620
Date of Patent:
Dec. 22, 1998
[54] TUNABLE TIME PLATE
[75] Inventor: Chaozhi Wan, Arcadia, Calif.
[73] Assignee: Uniwave Technology, Inc., Chatsworth, Calif.
[21] Appl. No.: 784,767
[22] Filed: Jan. 16, 1997
[51] Int. Cl. ${ }^{6}$ \qquad H01G 3/10
[52] U.S. Cl. \qquad 372/22; 372/25; 372/27; 372/105; 372/700
[58] Field of Search 372/25, 22, 700, 372/27, 105, 92

References Cited

U.S. PATENT DOCUMENTS

$4,880,996$	$11 / 1989$	Peterson et al. .
$4,884,276$	$11 / 1989$	Dixon et al. .
$4,961,195$	$10 / 1990$	Skupsky et al. .
$5,065,046$	$11 / 1991$	Guyer .
$5,117,126$	$5 / 1992$	Geiger .
$5,123,022$	$6 / 1992$	Ebbers et al. .
$5,144,630$	$9 / 1992$	Lin.
$5,181,212$	$1 / 1993$	Moberg.
$5,206,868$	$4 / 1993$	Deacon .
$5,274,650$	$12 / 1993$	Amano.
$5,278,852$	$1 / 1994$	Wu et al. .
$5,363,192$	$11 / 1994$	Diels et al. .

```
5,420,875 5/1995 Sternklar
```

\qquad

``` 372/27 5,590,148 12/1996 Szarmes .................................. 372/105 5,671,232 9/1978 Lee et al. ................................... 372/27
```


OTHER PUBLICATIONS

Jones et al; "Multiwatt-Level 213 nm Source Based on a Repetitively Q-Switched CW-Pumped ND:YAG Laser"; IEEE Jour. of Quantum Electronics;vol. QE-15.No.4,Apr. 1979.

Pixton; "Tripling yag frequency"; Laser Focus;pp. 66-70.
Primary Examiner-Leon Scott, Jr.
Attorney, Agent, or Firm-Thomas I. Rozsa; Tony D. Chen; Jerry Fong

ABSTRACT
A tunable time plate device for providing a continually adjustable time delay between two linearly polarized laser pulses ω_{1} and ω_{2}. The device comprises a time plate made of a parallel flat birefringence crystal having a principal axis of refractive index n_{z} parallel to its surface, and a principal axis of refractive index $\mathrm{n}_{\boldsymbol{x}}$ having an angle ϕ to its surface normal. The time plate is rotatably mounted such that it is rotatable about its n_{z} principal axis for tuning a time delay between the two laser pulses as they travel through the time plate which is a function of an incident angle θ between its surface normal and the propagation direction of the laser pulses. The time delay therefore can be continually adjusted by rotating said time plate to change said incident angle θ.

20 Claims, 4 Drawing Sheets

